
Embedding EUROPA

Embedding EUROPA
Using the C++ API1.
Using the JAVA API2.
Building your own project3.

1.

Embedding EUROPA
EUROPA comes with a tool called makeproject, which will generate C++ and Java projects for you.

They both illustrate how you can perform the full application cycle :

Initialize EUROPA1.
Load/Modify model and initial state descriptions2.
Invoke a solver3.
Extract plan results from the Plan Database4.
Repeat steps 2-4 as many times as needed5.
Shutdown EUROPA6.

Using the C++ API

Take a look at the main() program that makeproject generates for the C++ project : Main.cc

You have 2 options to implement the application cycle described above :

The PSEngine interface is the official interface for EUROPA clients, it is the recommended way to use
EUROPA. This interface is very straightforward and allows you to run the entire application cycle
described above. This abstraction layer will isolate your client code from most changes in the internals of
the EUROPA implementation, it is also designed for easy mapping to other languages using SWIG, if
you're planning to write your application in a language other than C++ this interface should be either
already available in the EUROPA distribution, or relatively easy to add (currently only Java bindings are
bundled with the EUROPA distribution, but we have plans to add Python and any other languages that are
popular with the EUROPA user base).

•

The EuropaEngine interface gives access to the internal modules of EUROPA. You will have to spend
more time understanding the different classes, probably write more code to extract information from the
Plan Database and be more careful about the calls that you make. EuropaEngine is a base class to the
PSEngine instances that you get from PSEngine::makeInstance() calls, so you can always dynamic_cast a
PSEngine instance to a EuropaEngine one. By using EuropaEngine you will not be isolated from changes
in the EUROPA internals, therefore you should be ensure that your needs are not met by the PSEngine API
before using this interface.

•

You will probably want to start with the PSEngine interface and if it is doesn't give you sufficient low-level access
(this should be rare, except for very advanced applications) for your purpose switch to the EuropaEngine interface
(just do a dynamic cast as described above).

Embedding EUROPA 1

http://www.swig.org

Eventually the PSEngine interface will be extended to expose all the extension points in EUROPA and external
clients should never have to use EuropaEngine.

Using the JAVA API

The PSEngine interface is automatically mapped to Java using SWIG
Take a look at the main() program that makeproject generates for the Java project : Main.java
makeproject uses a combination of Java and BeanShell scripting to achieve its goal, if you put everything together
in a single Java program it would look something like this :

import org.ops.ui.util.LibraryLoader;
import psengine.*;

class Main
{
 public static void main(String args[])
 {
 String debugMode = args[0];
 String nddlFilename = args[1];

 PSEngine europa = makePSEngine(debugMode);
 europa.start();
 europa.executeScript("nddl",nddlFilename,true/*isFile*/);
 runSolver(europa);
 europa.shutdown();
 }

 /*
 * debugMode = "g" for debug, "o" for optimized
 */
 static PSEngine makePSEngine(String debugMode)
 {
 PSEngine psEngine;
 LibraryLoader.loadLibrary("System_"+debugMode);
 psEngine = PSEngine.makeInstance();

 return psEngine;
 }

 static void runSolver(PSEngine europa)
 {
 String plannerConfig = "PlannerConfig.xml";
 int startHorizon=0, endHorizon=100;

 PSSolver solver = europa.createSolver(plannerConfig);
 solver.configure(startHorizon,endHorizon);

 int maxSteps = 1000;
 for (int i = 0; !solver.isExhausted() && !solver.isTimedOut() && i<maxSteps; i = solver->getStepCount()) {
 solver.step();
 if (solver.getFlaws().size() == 0)
 break; // we're done!
 }

 if (solver->isExhausted()) debugMsg("Solver was exhausted after " + i + " steps");
 else if (solver.isTimedOut()) debugMsg("Solver timed out after " + i + " steps");
 else debugMsg("Main","Solver finished after " << i << " steps");
 }

Using the C++ API 2

http://www.swig.org
http://www.beanshell.org

 static void debugMsg(String msg)
 {
 System.out.println(msg);
 }
}

Building your own project

If you don't want to use the infrastructure generated by makeproject, you will need to :

C++ API
Add the directories $EUROPA_HOME/include and $EUROPA_HOME/include/PLASMA to your
include path

♦

Link in the EUROPA libraries from $EUROPA_HOME/lib.♦

•

Java API
Add the following files from $EUROPA_HOME/lib to your classpath : nddl.jar, PSEngine.jar,
PSUI.jar

♦
•

In both cases, make sure $EUROPA_HOME/lib is in your LD_LIBRARY_PATH (or on your PATH if you're on
Windows)

Using the JAVA API 3

	tmprpk1F_tracpdf

